aez-notes
Moldy Gelatin
Airborne spores produce tiny mold colonies on gelatin plates in a laboratory. The many plates average 3 colonies per plate. What fraction of plates has exactly 3 colonies? If the average is a large integer m, what fraction of plates has exactly m colonies?
Since the colonies are tiny and there are many plates we can safely use a Poisson distribution for the number of colonies per plate. To consider the large m behaviour we can use Stirling's approximation.
f(x) := pdf_poisson(x,x); print(f(x)); /* x - x x %e -------- x! */ stirling(n) := n * log(n) - n + log(2 * %pi * n) / 2; approxLogF(x) := (x * log(x) - x) - stirling(x); approxLogF2(x) := 1 / sqrt(2 * %pi * x); print(float(approxLogF2(x))); /* 0.3989422804014326 ------------------ sqrt(x) */ vals(x) := [x, float(f(x)), float(approxLogF2(x))]; print(vals(2^1), vals(2^2), vals(2^3), vals(2^4)); /* [2, 0.2706705664732254, 0.2820947917738781] [4, 0.1953668148131645, 0.1994711402007163] [8, 0.1395865319505969, 0.141047395886939] [16, 0.09921753162215583, 0.0997355701003581] */