Deep learning for genetic epidemiology

Alexander E. Zarebski University of Melbourne

ANZIAM 2024

- Infectious disease epidemiology helps to inform epidemic response: lockdowns, vaccination strategy, etc.
- Knowing the prevalence of infection and reproduction number is useful for selecting an appropriate response
- Genetic epidemiology uses genomic data and to estimate these quantities

Background: phylodynamics

- Phylodynamics uses genomic data to study how a population size has changed over time
- Helps us understand the efficacy of interventions
- Helps us answer questions such as
 - Where has the pathogen come from?
 - What proportion of cases we are observing?
 - Is this variant more transmissible?

• ...

What is a phylogenetic tree?

Transmission event
Infectious interval

Unobserved infection

Ongoing infection

 \rightarrow

What does this tell me?

Motivation for a new approach

- We want the *prevalence of infection* and the *reproduction number*
- Phylodynamics can be slow; we need answers in a hurry

• But worst of all...

What about neural networks?

"statistics" : $\mathcal{D} \to \Theta$

"simulation" : $\Theta \to \mathcal{D}$

Simulate $\theta_i \in \Theta$, then $d_i \in \mathcal{D}$ to generate $\{(d_i, \theta_i)\}_i$

Train a neural network to predict θ_i when given d_i

Terminology

Neural networks:

- Unit: $y = \sigma(\mathbf{W}x + \mathbf{b})$
- Feedforward: $\mathbb{R}^n \to \mathbb{R}^m$
- Recurrent: Sequential data $\rightarrow \mathbb{R}^m$
- Convolutional: Tabular data $\rightarrow \mathbb{R}^m$
- Recursive: Recursive data $\rightarrow \mathbb{R}^m$

What is a *recursive* neural network?

What is a *recursive* neural network?

 $\ensuremath{\mathcal{T}}$ is the set of trees.

 $L: \mathbb{R}^{2n+1} \to \mathbb{R}^n$ is a linear map.

 σ is an activation function.

 $b: \mathcal{T} \to \mathbb{R}_{\geq 0}$ is the branch length

The map $f : \mathcal{T} \to \mathbb{R}^n$ is given by $f(t) = \begin{cases} \sigma((b(t), \mathbf{0})) & \text{for leafs } t \\ \sigma(L((\sigma(b(t)), f(\text{left}(t)), f(\text{right}(t))))) \end{cases}$

Spoilers!

- You can train a neural network to estimate the prevalence of infection and the basic reproduction number
- It will be able to use both genomic data and time series data
- It runs **fast** (once you have trained it)
- You can train it on your laptop

Epidemic model

- Birth-death-sampling process
- Infect new cases at rate $\boldsymbol{\lambda}$
- Cease to be infectious when:
 - Test cases at rate $\boldsymbol{\omega}$
 - Sequence cases at rate $\,\psi\,$
 - Cases recover at rate $\boldsymbol{\mu}$
- Observe the process
 - Time series from aggregated tests
 - Reconstruct phylogeny from sequences

Point estimate bias during training

Iterations of optimization

Uncertainty calibration during training

Iterations of optimization

Take home message(s)

- Finally! Simulation based inference
 - That sounds familiar; what about the bootstrap, particle filter, and ABC?
- Phylodynamics can go beyond simple models!
 - That sounds familiar; what about pMCMC and tree uncertainty?
- It's an exciting time to be working on phylodynamics

Thank you

- Jennifer Flegg
- Melbourne Mathematical Biology (MMB) Group